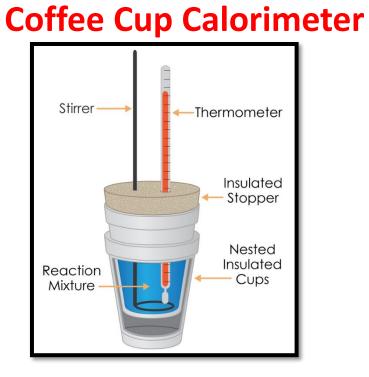
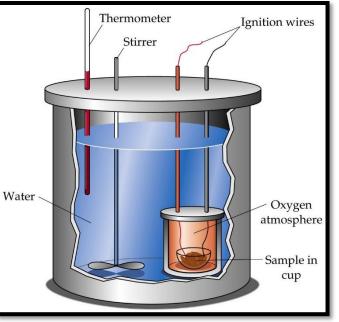
N-36 Calorimetry



You can use the 1st Law of Thermodynamics to solve "calorimetry problems" where you solve for information on one substance by knowing information on another substance.


Link to YouTube Presentation: https://youtu.be/s_2BJ7HgBml

Durpose of Calorimetry

Measure heat transferred from one object to another, or the energy transferred during a reaction.

Common Type of Question

- Transferring a HOT object into a COLD liquid
- Transferring a COLD object into a HOT liquid
- Pouring two liquids together that start at different temperatures
- Calculating the heat released/absorbed during a chemical reaction

Still Using Q = mCΔT

These problems still involve energy So we still use the Q = mCΔT equation BUT THIS TIME... We need Q = mCΔT for each substance... We will have <u>TWO</u> Q=mCΔT equations

How can we solve for a substance when we don't have enough information?

1st Law of Thermodynamics!

1st Law of Thermodynamics

Energy cannot be created or destroyed We are TRANSFERRING energy

Therefore...

Energy In = Energy Out Energy Absorbed = Energy Released 20 J of energy absorbed = 20 J of energy released

We need our math to match our concepts...

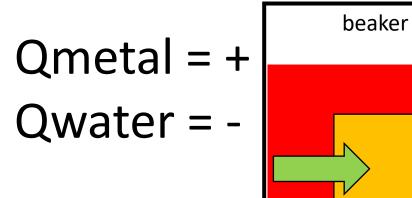
Energy In = Energy Out Energy Absorbed = Energy Released Qubstance 1 = - Qubstance 2 Negative sign will stand for "OPPOSITE" not necessarily negative. Makes it so it doesn't really matter which material you start with.

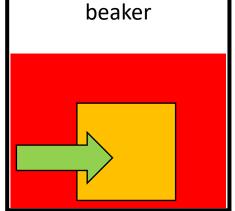
Q = -Q shown with numbers

You put a hot piece of metal into a cold cup of water. The water absorbs 50 Joules of energy, so the metal released 50 Joules of energy

Q _{water} =	- Q _{metal}	
endo	ехо	
+	-	
50 J = -(-50 J)		

Since our negative sign in our equation means opposite, the negatives will sort themselves out!


Think about where the negatives are coming from...


m = always + C = always + ΔT = + or - !!! Therefore...

Q can end up + or -

Example with Pictures

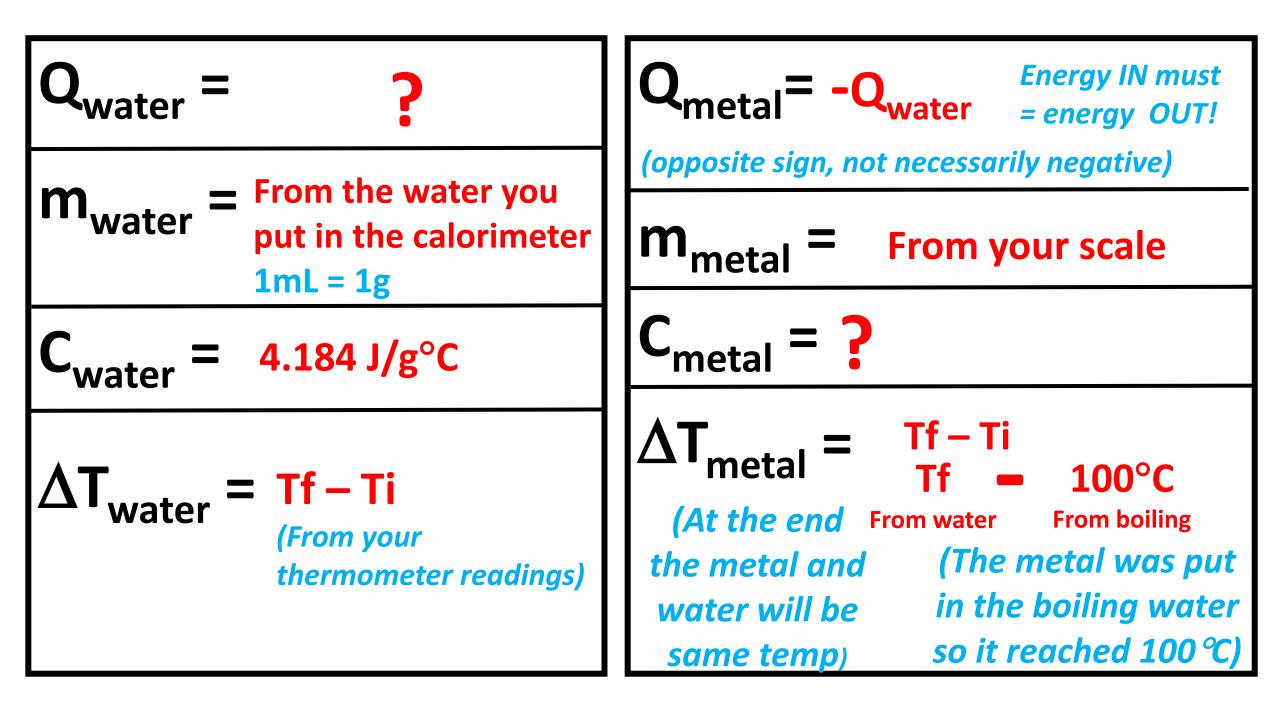
Energy absorbed \rightarrow Q = + Energy released \rightarrow Q = -**ENERGY IN = ENERGY OUT**

calorimeter

Qmetal = -Qwater = +

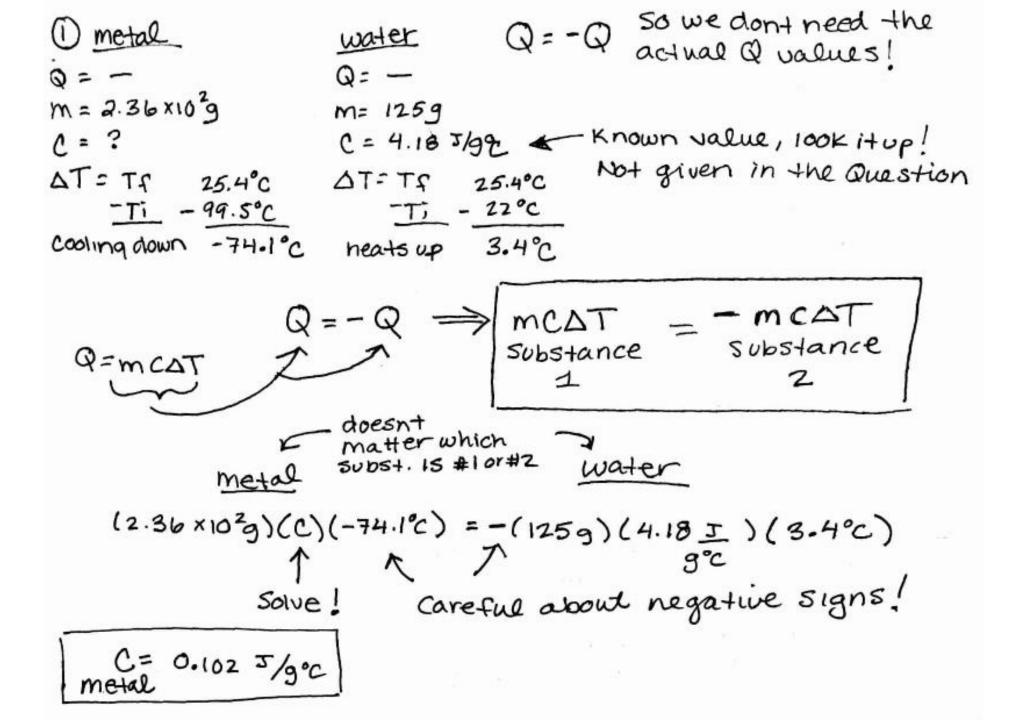
Hot Water Metal is heating up **Energy transfer into METAL**

Cold Water Water is heating up **Energy transfer into WATER**


Key Thing to Note About T_{final}

If you leave the object/liquid/solutions together long enough they will come to the same temperature!

Example:


Tfinal_{water} = **Tfinal**_{metal}

A very convenient fact that will simplify the algebra to allow us to solve for various things.

- Glue the questions in your notebook
- Show your work the way I do!
- Annotate the practice problems with comments, tips, warnings, explanations, etc! These are NOTES not just practice problems!

 Calculate the specific heat of a metal if
 2.36 x 10² grams of it at 99.5°C is added to
 125.0 mL of water at 22.0°C. The final temperature of the system is 25.4°C.

2) A lump of chromium (Cr) has a mass of 95.3 grams and a temperature of 90.5°C. It is placed into a calorimeter with 75.2 mL of water at **20.5°C.** After stirring, the final temperature of the water, Cr metal, and calorimeter is 28.6°C. What is the specific heat of Cr metal?

@ Chromium	water	Q = -Q
Q= m= 95.3g	Q= m= 75.2g	MCAT = - MCAT
C = ? $\Delta T = T_{f} = 28.6^{\circ}C$ $T_{i} = -90.5^{\circ}C$ $\cos 1s down = -61.9^{\circ}C$	C= 4.18 \$/9 °C DT = Tf 28.6°C - Ti - 20.5°C heatsup 8.1°C	* Dont be Sloppy with negatives! They <u>mean</u> Something! They matter!
Chromium.		ater
$\frac{(95.3g)(c)(-61.9c)}{9c} = -(75.2g)(4.18 \underline{J})(8.1c)$		
C = 0.432 Chromium	- <u>5</u> 9°C	

3) A 100.0 gram sample of water at 50.0°C is mixed with a 50.00 gram sample of water at 20.0°C. What is the final temperature of the 150.0 grams of water?

Who cares if it is two waters instead of a metal and a water?! Still two substances! Nothing changes! Actually easier because the specific heats on each side will cancel out if you want! I don't always do it in my keys because people always ask what happened to them [©]

(3) water #1. Water #2.

$$Q = Q = Q = Q = -Q$$
 $m = 100g$
 $m = 50g$
 $C = 4.18 J/g^{\circ}C$
 $\Delta T = Tf$?
 $Tf = -20^{\circ}C$
 $Tf = -50^{\circ}C$
 $Tf = -20^{\circ}C$
 $Tf = -20^$

because of algebra and calculator mistakes.

Continued on next slide! Cant fit it all here...

$$\frac{water \#1}{(100g)(4.187/gec)(Tf-50c)} = -\frac{water \#2}{(50g)(4.187/gec)(Tf-20c)}$$

* TIPS

distribute every thing then combine variables and then isolate

+

* Still just solving for missing variable! Just more to rearrange

* careful to distribute negative signs and with double negatives

$$\frac{100 \text{ Tf} - 5000 = -50 \text{ Tf} + 1000}{150 \text{ Tf} + 5000 + 50 \text{ Tf} + 5000}$$

$$\frac{(50 \text{ Tf} = 6000}{150} \qquad \boxed{\text{Tf} = 40^{\circ}}$$

$$\frac{water \#1}{(100g)(4.18 J/gec)(Tf-50c)} = -\frac{water \#2}{(50g)(4.18 J/gec)(Tf-20c)}$$

What if you forgot to cancel out the matching specific heats? No big deal! You will get the same answer!

418 Tf - 20900 = - 209 Tf + 4180 +209 TF +209 TF 627Tf 4180 - 20900 + 20900 20900 25080

YouTube Link to Presentation

<u>https://youtu.be/s_2BJ7HgBml</u>